Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria.

نویسندگان

  • D Jorcke
  • M Ziegler
  • A Herrero-Yraola
  • M Schweiger
چکیده

NAD+ glycohydrolase (NADase) and non-enzymic ADP-ribosylation have been thought to be involved in the regulation of mitochondrial Ca2+ fluxes. In this study it was found that several conditions (5 mM nicotinamide, 5 mM 3-aminobenzamide, 2 mM EDTA, 1 mM ATP, 10 mM dithiothreitol) known to strongly inhibit the NADase decreased ADP-ribosylation in bovine liver mitochondrial membranes with [32P]NAD+ as substrate to only a limited extent, if at all. The reaction led to the specific modification of two proteins with apparent molecular masses of approx. 26 and 53 kDa. An excess of added free ADP-ribose diminished the incorporation of label from [32P]NAD+ only slightly. Dithiothreitol inactivated the NADase, whereas ADP-ribosylation was unaffected. At low concentrations (25 microM) ADP-ribosylation was efficient with NAD+, but not ADP-ribose, as substrate. Under these conditions mitochondrial ADP-ribosylation seems to occur as an enzymic reaction rather than a non-enzymic transfer of ADP-ribose previously liberated from NAD+ by NAD+ glycohydrolase. The chemical stability of the protein-ADP-ribose bonds in the mitochondrial membranes indicated that cysteine residues are the predominant acceptors. Moreover, yeast aldehyde dehydrogenase, known to be a substrate for thiol-associated ADP-ribosylation, was efficiently ADP-ribosylated by using the mitochondrial activity and NAD+ as substrate. The modification of a cysteine residue in the aldehyde dehydrogenase was verified by the observation that pretreatment of this acceptor protein with N-ethylmaleimide substantially decreased its modification. It is therefore concluded that bovine liver mitochondria contain a cysteine-specific ADP-ribosyltransferase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of bovine liver mitochondrial NAD+ glycohydrolase as ADP-ribosyl cyclase.

The present investigation identifies bovine liver mitochondrial NADase (NAD+ glycohydrolase) as a member of the class of bifunctional ADP-ribosyl cyclases/cyclic ADP-ribose hydrolases, known to be potential second messenger enzymes. These enzymes catalyse the synthesis and degradation of cyclic ADP-ribose, a potent intracellular calcium-mobilizing agent. The mitochondrial enzyme utilized the NA...

متن کامل

Poly(ADP-ribosylation) protects maternally derived histones from proteolysis after fertilization.

Fertilization in sea urchins is followed by the replacement of sperm-specific histones by cleavage-stage histone variants recruited from maternal stores. Such remodelling of zygote chromatin involves a cysteine proteinase that degrades the sperm-specific histones in a selective manner, leaving the maternal cleavage-stage histone variants intact. The mechanism that determines the selectivity of ...

متن کامل

ALTERATIONS OF ADP-RIBOSYLATION AND DNA-BREAKS IN AGING BRAIN CELLS

Neuronal and astroglial cells were prepared from whole brain of three month and 30-month- old rats for study of alterations in the nuclear poly ADP-ribosylation and DNA breaks with age. The relative purity of the cell preparations was confirmed by the determination of the neurofilament (low molecular weight) and glutamine synthetase content of the cells using ELISA. An increase (75%) in th...

متن کامل

N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis.

The mechanism of N-acetyl-p-benzoquinone imine (NAPQI)-induced release of Ca2+ from rat liver mitochondria was investigated. The addition of NAPQI or 3,5-Me2-NAPQI (a dimethylated analogue of NAPQI with only oxidizing properties) to mitochondria resulted in the rapid and extensive oxidation of NADH and NADPH. High-performance liquid chromatographic analysis of mitochondrial pyridine nucleotides...

متن کامل

Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress.

Poly(ADP-ribosylation), primarily via poly(ADP-ribose) polymerase-1 (PARP-1), is a pluripotent cellular process important for maintenance of genomic integrity and RNA transcription in cells. However, during conditions of oxidative stress and energy depletion, poly(ADP-ribosylation) paradoxically contributes to mitochondrial failure and cell death. Although it has been presumed that poly(ADP-rib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 332 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1998